Search results for "Natural stabilizer"

showing 2 items of 2 documents

Biopolyester-based systems containing naturally occurring compounds with enhanced thermooxidative stability

2016

Background This work presents a sustainable approach for the stabilization of polylactic acid (PLA) against thermo-oxidative aging. Methods Naturally occurring phenolic and polyphenolic compounds, such as ferulic acid (FerAc), vanillic acid (VanAc), quercetin (Querc) and vitamin E (VitE), were introduced into PLA. Results The preliminary characterization of the systems formulated containing different amounts of natural stabilizers showed that all compounds used acted as plasticizers, leading to a decrease in rheological functions with respect to neat PLA, without significantly modifying the crystallinity of the raw material. The study of the thermo-oxidative behavior of neat PLA and PLA/nat…

Hot TemperatureCoumaric AcidsPolyestersBiophysicsBiomedical EngineeringBioengineering02 engineering and technologyOxidative phosphorylationNaturally occurring stabilizers010402 general chemistryCoumaric acid01 natural sciencesPolylactic acidBiomaterialschemistry.chemical_compoundPolylactic acidDifferential scanning calorimetryVanillic acidthermo-oxidative stabilityOrganic chemistryVitamin EBio-based polymer systems; Differential scanning calorimetry; Naturally occurring stabilizers; Polylactic acid; Thermo-oxidation; Coumaric Acids; Hot Temperature; Oxidation-Reduction; Polyesters; Quercetin; Vanillic Acid; Vitamin E; Biophysics; Bioengineering; Biomaterials; Biomedical EngineeringVanillic AcidChemistryOxidation reductionGeneral MedicineBio-based polymer systems021001 nanoscience & nanotechnologyThermo-oxidation0104 chemical sciencesPolyesterPolilactic acidPolyphenolQuercetin0210 nano-technologyOxidation-Reductionnatural stabilizer
researchProduct

Concentration-dependent anti-/pro-oxidant activity of natural phenolic compounds in bio-polyesters

2017

Abstract In this work, the potential of several naturally occurring phenolic compounds, such as Ferulic Acid (FA), Vanillic Acid (VA), Vitamin E (VE) and Quercetin (Q), as stabilizers against the photo-oxidative degradation of Polylactic acid (PLA) has been assessed. Specifically, PLA-based films containing different amounts of considered stabilizers have been formulated and their photo-stability under UVB exposure has been evaluated. The preliminary characterization of the formulated films shows that all used stabilizers exert plasticizing action, as probed by rheological analysis, due to their low molecular weight. Moreover, no significant modification of the PLA crystallinity has been no…

Materials Chemistry2506 Metals and AlloysMaterials sciencePolymers and Plasticsmedicine.medical_treatmentCondensed Matter Physic02 engineering and technology010402 general chemistry01 natural sciencesAnti-/pro-oxidant activity; Natural stabilizers; Photo-oxidation; Polylactic acid; Condensed Matter Physics; Mechanics of Materials; Polymers and Plastics; Materials Chemistry; 2506; Metals and AlloysPolylactic acidFerulic acidCrystallinitychemistry.chemical_compoundPolylactic acidMaterials ChemistrymedicineVanillic acidOrganic chemistryPhoto-oxidationMechanics of MaterialNatural stabilizersNatural stabilizerPolymers and PlasticVitamin EMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter PhysicsPro-oxidantAnti-/pro-oxidant activity0104 chemical sciencesPolyesterchemistryMechanics of Materials25060210 nano-technologyQuercetin
researchProduct